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A mathematical formulation of the Kraichnan theory for 2-D fully developed
turbulence is given in terms of ensemble averages of solutions to the Navier–
Stokes equations. A simple condition is given for the enstrophy cascade to hold
for wavenumbers just beyond the highest wavenumber of the force up to a fixed
fraction of the dissipation wavenumber, up to a logarithmic correction. This is
followed by partial rigorous support for Kraichnan’s eddy breakup mechanism.
A rigorous estimate for the total energy is found to be consistent with Kraichnan’s
theory. Finally, it is shown that under our conditions for fully developed turbu-
lence the fractal dimension of the attractor obeys a sharper upper bound than in
the general case.
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INTRODUCTION

Much of the success of conventional theoretical physics (electromagnetic
theory, quantum mechanics, acoustics, etc.) is owed to the firm mathemat-
ical infrastructure underlying that field, namely the theory of linear partial
differential equations, and more generally the theory of linear operators.
In contrast until recently such a common phenomenon as the high rate of
flow of water and the accompanying turbulence had no comparable firm
foundation. Albeit the underlying equations modeling this phenomenon,
viz., the Navier–Stokes equations has been well known as a model, its



nonlinear nature, together with the observed random behavior of the flow
precluded obtaining explicit solutions of those equations. Thus the theory
of turbulence had to rely to a large extent on phenomenological, intuitive
arguments and, more recently on limited numerical solutions of the
underlying equations and their approximations.

While the results of the intuitive arguments can be compared to some
extent with the experimental studies of flows in 3-D, the paucity of data for
turbulent flows in 2-D leaves the theoretical considerations of such flows
open to some questions. For instance, the attractive, physically reasonable
theory of 2-D turbulence due to Kraichnan (1) rests on some more or less
explicit assumptions, which are difficult, if not impossible, to test experi-
mentally. In particular, there is the question of the extent to which that
theory is in fact consistent with the Navier–Stokes equations in 2-D.
Modern methods of functional analysis as applied to nonlinear partial dif-
ferential equations, together with the theory of statistical solutions of such
equations offer some powerful, even if somewhat incomplete tools for
answering those questions. It is the purpose of this paper to explore the
correspondence between the rigorous properties of the solutions of 2-D
Navier–Stokes equations, and the largely phenomenologically motivated
assumptions of Kraichnan’s theory. Admittedly, because of the current
limitations of the available mathematical tools, we are forced to apply
some heuristic arguments, but even those are closer to mathematical rigor
than the conventional approach used hitherto. As will be seen sub-
sequently, much of the results of ref. 1 are in fact derivable from the
underlying equations, but some new insights are gained in the process of
this study.

In Section 1 we present some definitions, notation, and recall some
relevant results from previous efforts. Section 2 contains the basic concepts
needed to follow the statistical properties of the solutions of Navier–Stokes
equations. In particular, the relationship between time averages and statis-
tical ensemble averages is explored. It is important to emphasize here that,
even though the explicit expressions for the statistics of the turbulent
velocity field are not available, much can be said about the nature of the
statistical solutions. A number of relations between averaged terms in the
Navier–Stokes equations are also derived in Section 2.

In Section 3 we prove that the rate of enstrophy transfer from low
to high modes dominates that from high to low modes. Unfortunately,
the result is proved to hold only deep in the dissipation range (see
Remark 5.10). As a consequence it is merely suggestive of an eddy breakup
mechanism in the inertial range proposed by Kraichnan. The tenets of
the Kraichnan theory for fully developed two-dimensional turbulence are
first recalled in general physical terms in Section 4. For completeness
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we reproduce the universality argument of Kolmogorov, Batchelor and
Kraichnan for the forms of both the energy per unit mass of eddies and the
dissipative wavenumber in terms of the total enstrophy dissipation rate and
respectively, wavenumber and viscosity. We then quantify energy, enstrophy,
and enstrophy dissipation rate in terms of the solution to the Navier–
Stokes equation and present Kraichnan’s alternative approach to the form
of the energy per unit mass, which assumes the more specific eddy breakup
mechanism. Finally it is shown that for the Kraichnan theory to hold, the
Grashof number must be large.

Rigorous partial support for the Kraichnan theory is presented in
Section 5. This includes a range for the cascade of enstrophy, provided a
certain wavenumber taken as the ratio of the averages of two norms is
sufficiently large compared to the highest wavenumber in the force. This
alternative wavenumber is then shown to be bounded by the Kraichnan
dissipative wavenumber up to a nondimensional constant factor, depending
only on the highest wavenumber of the force and the domain length. Then
assuming both Kraichnan’s theory and his particular form of the energy
spectrum, a sharper estimate is obtained for this alternative wavenumber
with the constant in the previous estimate replaced by a term which decays
as the reciprocal of the log of the Grashof number. The dissipation due to
viscosity from this alternative wavenumber to the dissipative wavenumber
is comparable to the total dissipation. A rigorous estimate for the total
energy is found to be consistent with one deduced from the Kraichnan
theory.

A completely mathematical formulation of the Kraichnan theory is
given in Section 6. One of the conditions is reformulated in terms of the
force, which simplifies to a readily verifiable condition in the case of two
forcing modes. We finish with a rigorous estimate for the Landau–Lifschitz
degrees of freedom. If the Kraichnan theory is assumed to hold, this
estimate results in an improvement over previous estimates (in terms of
the Grashof number) for the dimension of the global attractor of the
Navier–Stokes equations.

While this work supplements the results on 2-D turbulence in ref. 2,
we tried to keep it as self-contained as possible. Similar results have
recently been obtained for fully developed 3-D turbulence (see refs. 3 and 4).
Unlike other rigorous studies of turbulence made in terms of the space
variables (see, for example, ref. 5), the work here is done entirely in terms of
the wavenumber, in an effort to provide rigorous support for Kraichnan’s
approach.

During the final polishing stage of this paper our coauthor and friend,
Oscar P. Manley, passed away. We dedicate this paper to his memory, as
an homage to the inspirational role he played in much of our work.
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1. PRELIMINARIES

The incompressible Navier–Stokes equations

“u
“t
− n Du+(u ·N) u+Np=F,

div u=0

F
W

u dx=0

u(x, 0)=u0(x)

with periodic boundary conditions in W=[0, L]2 can be written as a dif-
ferential equation in a certain Hilbert space H (see refs. 6 and 7),

du
dt
+nAu+B(u, u)=f, u ¥H (1.1)

The phase space H is the subspace of L2(W)2 consisting of the closure of
the set of all R2-valued trigonometric polynomials u such that

N · u=0 and F
W

u(x) dx=0

The bilinear operator B is defined as

B(u, v)=P((u ·N) v)

where P is the Helmholtz–Leray projection onto H, that is, the orthogonal
projection of L2(W)2 onto H. The scalar product in H is taken to be

(u, v)=F
W

u(x) · v(x) dx, where a · b=a1b1+a2b2

with associated norm

|u|=(u, u)1/2=1F
W

u(x) · u(x) dx2
1/2

The operator A=−D is self-adjoint and its eigenvalues are of the form

12p
L
22 k ·k, where k ¥ Z20{0}
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We denote by 0 < l0=(
2p
L)
2 [ l1 [ l2 [ · · · these eigenvalues arranged in

an increasing order and counted according to their multiplicities, and write
w0, w1, w2,..., for the corresponding normalized eigenvectors (i.e., |wj |=1
for j=0, 1, 2,...).

The positive roots of A are defined by linearity from

Aawj=l
a
jwj, for j=0, 1, 2,...

on the set

DAa=3u ¥H : C
.

j=0
l2aj (u, wj)

2 <.4

We will write V=DA1/2 and the natural norm on V will be

||u||=|A1/2u|=1F
W

C
2

j=1

“

“xj
u(x) ·

“

“xj
u(x) dx2

1/2

=1 C
.

j=0
lj(u, wj)22

2

Given the periodic boundary conditions, we may express an element in H
as a Fourier series

u(x)= C
k ¥ Z

2
ake io0k ·x (1.2)

where

o0=l
1/2
0 =

2p
L

(1.3)

a0=0, a
g
k=a−k, and due to incompressibility, k ·ak=0. We shall associate

to each term in (1.2) a wavenumber o0 |k|. Parseval’s identity reads as

|u|2=L2 C
k ¥ Z

2
ak · a−k=L2 C

k ¥ Z
2
|ak |2

(we have also used | · | for the modulus of a vector in C2; we assume that the
meaning will be clear from the context) as well as

(u, v)=L2 C
k ¥ Z

2
ak · b−k

for v=; bke io0k ·x. We define projectors Po: HQ span{wj | lj [ o2} by

Pou= C
o0 |k| [ o

ake io0k ·x
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where u has the expansion in (1.2), along with Qo=I−Po. For conve-
nience, we define components of u by a range in wavenumber

uo, oŒ=(PoŒ−Po) u

for 0 [ o < o −, with the convention that uo,.=u for all 0 [ o < o0.
Recall the orthogonality relations of the bilinear term (see, for

instance, ref. 7)

(B(u, v), w)=−(B(u, w), v) (1.4)

and in two space dimensions only,

(B(u, u), Au)=0 (1.5)

Recall as well the strong form of enstrophy invariance (see, for instance,
ref. 8)

(B(Av, v), u)=(B(u, v), Av) (1.6)

A number of other relations we will use below follow easily from these. By
orthogonality, we have

0=(B(tu+v, tu+v), A(tu+v))

=(B(v, v), Av)+t[(B(u, v), Av)+(B(v, u), Av)+(B(v, v), Au)]

+{terms of degree 2 and 3 in t}

which yields the relation

(B(u, v), Av)+(B(v, u), Av)+(B(v, v), Au)=0 (1.7)

Applying (1.6) and (1.4) to (1.7) we obtain

(B(Av, v), u)−(B(v, Av), u)+(B(v, v), Au)=0 (1.8)

We will also need several inequalities in 2-D (see refs. 6 and 7), one often
referred to as Agmon’s

||u||. [ c1 |u|1/2 |Au|1/2 (1.9)

its alternative

||u||. [ c2 1 ln
|Au|
o0 ||u||

+12
1/2

||u|| (1.10)
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and finally, one known as Ladyzhenskaya’s

|u|L4(W) [ c3 |u|1/2 ||u||1/2 (1.11)

Relations (1.9) and (1.10) are valid for any u in DA, while (1.11) holds
in DA1/2. Throughout the paper, constants ci, i=1, 2, 3,... are universal,
and of the order of unity (uppercase C may have some dependencies, which
will be noted).

If u=uo, 2o for some o > 0, then (1.9) yields

||u||. [ c1 `2 ||u|| (1.12)

The following result is used in Section 6.

Lemma 1.1. Let v, w be in V, with Pow=w. Then

|(B(v, v), w)| [ c4 1 ln
o

o0
+12

1/2

||v||2 |w|, with c4=max{2c2, 12c1}
(1.13)

If moreover, q ¥ V and Qoq=q, then

|(B(q, q), w)| [ 12c1 |w| C
.

n=1

||rn ||2

22n
[ 3c1 ||q||2 |w| (1.14)

where

rn=(P2no−P2n−1o) q

Proof. Write v=p+q, where q=Qov, p=Pov, and qŒ=P2oq. Then
since

PoB(p, Q2ov)=0=PoB(Q2ov, p)

we have

(B(v, v), w)=(B(p, p), w)+(B(p, q), w)+(B(q, p), w)+(B(q, q), w)

=(B(p, p), w)+(B(p, qŒ), w)+(B(qŒ, p), w)+(B(q, q), w)
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and hence, immediately from (1.10) and (1.12)

|(B(p, p), w)|+|(B(p, qŒ), w)|+|(B(qŒ, p), w)|

[ 2c2 ||p+qŒ||2 |w| 1 ln
o

o0
+12

1/2

Thus, (1.13) follows from (1.14).
To establish (1.14), first note that

P2n−1oB(rn, rj)=0 for j ] n−1, n (1.15)

so that by (1.4)

|(B(q, q), w)| [ C
.

a, n=1
|(B(ra, rn), w)|

=C
.

n=1
[|(B(rn, rn)+B(rn, rn+1)+B(rn+1, rn), w)|]

[ C
.

n=1
[|(B(rn, w), rn)|+|(B(rn, w), rn+1)|+|(B(rn+1, w), rn)|]

[ C
.

n=1
||A1/2w||. (|rn |2+2 |rn | |rn+1 |)

[ 3c1 |A1/2w|1/2 |A3/2w|1/2 C
.

n=1
|rn |2

[ 3c1 |w| o2 C
.

n=1
|rn |2

[ 12c1 |w| C
.

n=1

||rn ||2

22n
L

We denote by S the solution operator defined by S(t) u0=u(t), where
u(t) is the unique solution to (1.1) such that u(0)=u0. The global attractor
A is defined by

A=3
t \ 0
S(t) B

where B is a bounded absorbing set. Equivalently A is the largest bounded,
invariant set (i.e., S(t)A=A for all t \ 0).
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If we multiply (1.1) by u, (respectively Au) integrate over W and apply
(1.4) and (1.5), we find that

1
2
d
dt
|u|2+n ||u||2=(f, u) (1.16)

1
2
d
dt
||u||2+n |Au|2=(f, Au) (1.17)

In the scientific literature,

1
L2
|u|2=2 times the total energy per unit mass (1.18)

and

1
L2
||u||2=the total enstrophy per unit mass (1.19)

See Remark A.1 for a derivation of (1.18) and (1.19). Relations (1.16) and
(1.17) are the balance equations for the energy and enstrophy, respectively.
Applying the Cauchy–Schwarz and Young inequalities to (1.16) gives

d
dt
|u|2+n ||u||2 [

|A−1/2f|2

n
[
|f|2

no20
(1.20)

from which we have

lim sup
tQ.

1
t
F
t

0
||u||2 dy [

|f|2

n2o20
(1.21)

A similar procedure applied to (1.17) yields

lim sup
tQ.

1
t
F
t

0
|Au|2 dy [

|f|2

n2
(1.22)

Applying a Gronwall inequality to (1.20) and its counterpart for the
enstrophy gives the following well-known bounds on the attractor in V
and H.

Lemma 1.2. For all u ¥A we have ||u|| [ Gno0 and |u| [ Ggn, where

G=
|f|
n2o20

and Gg=
|A−1/2f|
n2o0

(1.23)
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We will refer to G and Gg as the generalized and associated Grashof
numbers, respectively. The former was introduced in ref. 9, while the latter
was considered in ref. 10 only for the three-dimensional case. As will be
seen in the next paragraphs, Gg is also useful in the two-dimensional case.
We note that

G [
ō

o0
Gg, and Gg [

o0

o
¯

G (1.24)

where o
¯

, ō are respectively, the largest and smallest wavenumbers such that

f= C
o
¯
< |k| o0 [ ō

fke io0k ·x (1.25)

Note that this is equivalent to

Po
¯
f=0, Qōf=0 (1.26)

Though we will occasionally note the specific dependence on o
¯

, ō, we will
assume throughout this paper that

ō/o0 [ C0 (1.27)

where C0 is some fixed constant.
Another well-known, straight-forward estimate, this time using (1.11),

on the difference of two solutions gives a lower bound on G in order to
have a nontrivial attractor.

Proposition 1.3. For A to consist of more than a single element,
we must have

G1/2 \
1
c3

(1.28)

where c3 is as in (1.11).

2. STATIONARY STATISTICAL APPROACH

In fully developed turbulent flows, the physically interesting instanta-
neous quantities appear to behave unpredictably. However, time averages
of those same quantities behave in a more predictable way; usually they
can be reproduced in experiments. Therefore, the mathematical study of
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such flows should emphasize these averages. Yet for some continuous
functions F and some initial data u0, the limit, taken in the usual sense,

lim
tQ.

1
t
F
t

0
F(S(y) u0) dy (2.1)

may not exist. To avoid this technical mathematical difficulty, we shall
employ a generalized limit denoted LimtQ.. This is defined as a linear
functional on

B([0,.))={g: g is a bounded real-valued function on [0,.)}

which satisfies

Lim
tQ.

g(t)=lim
tQ.
g(t)

whenever the right-hand side exists, and

|Lim
tQ.

g(t)| [ sup{|g(t)|: 0 [ t <.} for all g ¥ B([0,.))

The existence of such a linear functional is a direct consequence of the
Hahn–Banach Theorem. (11) It follows that

lim inf
tQ.

g(t) [ Lim
tQ.

g(t) [ lim sup
tQ.

g(t) for all g ¥ B([0,.)) (2.2)

It is believed, but not yet proved, that in any experimental determination of
the average of any F(S(t) u0) the usual limit exists. The use of Lim makes
this point moot.

We will use the following version of the Bogolyubov–Krylov theory
(ref. 12), from ref. 13.

Proposition 2.1. For every u0 ¥DA there exists an invariant prob-
ability measure mu0 such that

Lim
tQ.

1
t
F
t

0
F(S(y) u0) dy=F

A

F(u) mu0 (du) (2.3)

for all real-valued continuous (with respect to the H-norm) functions F
on DA.
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From (1.21), (1.22) and (2.2) we can now easily infer that

F
A

||u||2 mu0 (du) [
|f|2

n2o20
, F

A

|Au|2 mu0 (du) [
|f|2

n2
(2.4)

for every u0 ¥H.
Let m be an arbitrary invariant probability measure on DA. Then m

satisfies m(A)=1. (13) The next result allows us to infer that any estimate
valid for all measures mu0 is also valid for any arbitrary invariant probabil-
ity measure.

Lemma 2.2. For any invariant probability measure m on DA

F
A

5F
A

F(u) mu0 (du)
6 m(du0)=F

A

F(u0) m(du0) (2.5)

Proof. By the Birkhoff Ergodic Theorem (11) there exists Fg=Fg
m

defined m-a.e., such that

lim
tQ.

1
t
F
t

0
F(S(y) u0) dy=Fg(u0) (2.6)

and

F
A

Fg(u) m(du)=F
A

F(u) m(du)

It follows that for an arbitrary invariant measure m, the usual limit in (2.1)
exists m-a.e.. But the generalized limit in (2.3) agrees with the usual limit
wherever the latter exists, and hence, in this case, Fgg=Fg m-a.e., where

Fgg(u0)=Lim
tQ.

1
t
F
t

0
F(S(y) u0) dy

Thus Fgg is measurable with respect to m and by (2.3)

F
A

5F
A

F(u) mu0 (du)
6 m(du0)=F

A

Fgg(u0) m(du0)

=F
A

Fg(u0) m(du0)=F
A

F(u0) m(du0) L

We remark that if m is ergodic, then Fg in (2.6) is constant m-a.e., but
this is not necessary for what follows.
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For a vector-valued Borel function F: HQH such that

F
A

|F(u)| m(du) <. (2.7)

one can define

F
A

F(u) m(du) ¥H

as the unique vector in H satisfying

(v, w)=F
A

(F(u), w) m(du) for all w ¥H (2.8)

With this definition, we readily obtain

n F
A

Aumu0 (du)+F
A

B(u, u) mu0 (du)=f (2.9)

for all u0 ¥H. Taking a second average of each term in (2.9), but now
with respect to any invariant probability measure m, gives us by virtue of
Lemma 2.2

n F
A

Aum(du)+F
A

B(u, u) m(du)=f (2.10)

for any invariant probability measure m. In order to simplify the notation
we introduce the convention that once an invariant measure m is chosen
and held fixed in our consideration, then the averages, with respect to m
will be simply denoted as O ·P, that is

OF(u)P=F
A

F(u) m(du) (2.11)

Thus (2.10) can be written as

nOAuP+OB(u, u)P=f (2.12)

Since by (2.4) we have

F
A

|Au| m(du) [ 3F
A

|Au|2 m(du)4
1/2

<.
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F(u)=Au satisfies (2.7), so that according to definition (2.8) we have

O(Au, AOuP)P=(OAuP, AOuP) (2.13)

But obviously

OAPouP=AOPouP=APoOuP=PoAOuPQ AOuP

and thus

|OAuP−AOPouP|=|OA(I−Po)OuP|

[ O|A(I−Po) u|P [ 3F
A

|(I−Po) Au|2 m(du)4
1/2

Q 0

by Lebesgue’s dominated convergence theorem. Thus

OAuP=AOuP (2.14)

and we may rewrite (2.12) as

nAOuP+OB(u, u)P=f (2.15)

This is the functional form of the Reynolds equation. Clearly, it can also be
written as

nAOuP+B(OuP, OuP)=f−OB(u−OuP, u−OuP)P (2.16)

where OB(u−OuP, u−OuP)P represents the contributions of the Reynolds
stresses (associated to the present averaging) to the driving body force f.
Explicitly denoting w=u−OuP, we have

OB(u−OuP, u−OuP)P=P 5 “
“xi

OwiwjP6
j=1, 2

(2.17)

where the tensor in the square brackets is the Reynolds stress. (Compare
(3.5) on p. 282 in ref. 2 with (5.1) on p. 260 of ref. 14.) We will supplement
(2.15) with the following consequences of (1.16) and (1.17)

On ||u||2P=(f, OuP) (2.18)

On |Au|2P=(f, AOuP) (2.19)

604 Foias et al.



To obtain (2.18) first take the time average of (1.16) and deduce that

F n ||u||2 mu0 (du)=F (f, u) mu0 (du), for all u0 ¥H

then apply Lemma 2.2. The proof for (2.19) uses (1.17) in a similar manner.
The relations (2.15), (2.18), and (2.19) have some interesting and useful

consequences of their own. Taking the scalar product of (2.15) with
respectively AOuP, OuP, A−1OuP, and applying respectively (2.19), (2.18), we
obtain

n |AOuP|2+(OBP, AOuP)=(f, AOuP)=nO|Au|2P

n |A1/2OuP|2+(OBP, OuP)=(f, OuP)=nO|A1/2u|2P

n |OuP|2+(OBP, A−1OuP)=(f, A−1OuP)

(2.20)

where, for convenience, we have written simply B for B(u, u).
From (2.13) we have that

O|A(u−OuP)|2P=O(Au, Au)P−O(Au, AOuP)P−O(AOuP, Au)P

+O(AOuP, AOuP)P

=O|Au|2P−|AOuP|2 (2.21)

Similarly we have

O|A1/2(u−OuP)|2P=O|A1/2u|2P−|A1/2OuP|2 (2.22)

Combining (2.21) and (2.22) with the first two equations in (2.20) gives

n(OBP, AOuP)=n2O|A(u−OuP)|2P \ 0,

n(OBP, OuP)=n2O|A1/2(u−OuP)|2P \ 0
(2.23)

Now take the scalar product of (2.15) first with OBP, A−1OBP

n(OBP, AOuP)+|OBP|2=(f, OBP),

n(OBP, OuP)+|A−1/2OBP|2=(f, A−1OBP)
(2.24)

and secondly with f, A−1f

n(f, AOuP)+(OBP, f)=|f|2,

n(f, OuP)+(A−1OBP, f)=|A−1/2f|2
(2.25)
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Introducing (2.18), (2.19), (2.23), (2.24) into (2.25), we obtain

n2O|Au|2P+n2O|A(u−OuP)|2P+|OBP|2=|f|2,

n2O|A1/2u|2P+n2O|A1/2(u−OuP)|2P+|A−1/2OBP|2=|A−1/2f|2
(2.26)

or equivalently,

2n2O|Au|2P+|OBP|2=|f|2+n2 |AOuP|2,

2n2O|A1/2u|2P+|A−1/2OBP|2=|A−1/2f|2+n2 |A1/2OuP|2
(2.27)

Consequently

n2O|Au|2P+|OBP|2 [ |f|2,

n2O|A1/2u|2P+|A−1/2OBP|2 [ |A−1/2f|2
(2.28)

We have from (2.15)

nAQōOuP=−QōOBP, nAPo
¯
OuP=−Po

¯
OBP (2.29)

so that

n2 |AOuP|2−|OBP|2=n2(|AQōOuP|2+|AOuo
¯
, ōP|2+|APo

¯
OuP|2)

−(|QōOBP|2+|OBo
¯
, ōP|2+|Po

¯
OBP|2)

=n2 |AOuo
¯
, ōP|2−|OBo

¯
, ōP|2

and similarly

n2 |A1/2OuP|2−|A−1/2OBP|2=n2 |A1/2Ouo
¯
, ōP|2−|A−1/2OBo

¯
, ōP|2

Thus (2.27) can be rewritten as

2n2O|Au|2P=|f|2+n2 |AOuo
¯
, ōP|2−|OBo

¯
, ōP|2,

2n2O|A1/2u|2P=|A−1/2f|2+n2 |A1/2Ouo
¯
, ōP|2−|A−1/2OBo

¯
, ōP|2

(2.30)

Note that the vectors on the right hand sides of (2.30) belong to
(Pō−Po

¯
) H. Our original proof of Theorem 7.7 was based on these rela-

tions. We preserve them here as they may be useful elsewhere.
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3. AVERAGED ENSTROPHY AND ENERGY FLUXES

We start first with some mathematical results, valid in the framework
considered in the previous section. In the next section, we shall discuss the
relevance of those results for the Kraichnan theory of the inertial range of
fully developed turbulent 2D fluid flows.

Let

po=Pou and qo=Qou

Multiply (1.1) by Apo and use (1.5) and (1.7) to obtain

1
2
d
dt
||po ||2+n |Apo |2=(B(po, po), Aqo)−(B(qo, qo), Apo)+(f, Apo)

=−L2[EQ

o −E
P

o ]+(f, Apo) (3.1)

where

EQ

o (u)=−
1
L2
(B(po, po), Aqo) and EP

o (u)=−
1
L2
(B(qo, qo), Apo)

(3.2)

are the rates of enstrophy transfer or enstrophy fluxes from low to high, and
high to low wavenumbers, respectively, at wavenumber o. Next, follow a
similar procedure, except multiply by Aqo so that

1
2
d
dt
||qo ||2+n |Aqo |2=L2Eo+(f, Aqo)=L2[E

Q

o −E
P

o ]+(f, Aqo) (3.3)

where the last equality defines Eo, the net rate of enstrophy transfer (or net
enstrophy flux) at the wavenumber o; if Eo > 0 (Eo < 0 resp.), it means that
this net transfer of enstrophy occurs from low to high (high to low) wave-
numbers. Finally, repeat both procedures, only multiply by po (respectively qo)
before integrating to arrive at

1
2
d
dt
|po |2+n ||po ||2=−L2eo+(f, po)

1
2
d
dt
|qo |2+n ||qo ||2=L2eo+(f, qo)

(3.4)
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where eo is the net rate of energy transfer (or net energy flux) at o defined
by

eo=eQ

o − e
P

o (3.5)

with

eQ

o (u)=−
1
L2
(B(po, po), qo) and eP

o (u)=−
1
L2
(B(qo, qo), po)

Proposition 3.1. Suppose that o > ō. Then for any invariant prob-
ability measure m

OEo(u)P=
n

L2
O|AQou|2P (3.6)

and

Oeo(u)P=
n

L2
O||Qou||2P (3.7)

Proof. Take the time average of (3.3) to obtain

1
2t
(||qo(t)||2−||qo(0)||2)+

n

t
F
t

0
|Aqo(y)|2 dy=

L2

t
F
t

0
Eo(u(y)) dy

Since ||qo || ¥ B([0,.)) it follows that

Lim
tQ.

n

t
F
t

0
|AQou(y)|2 dy=Lim

tQ.

L2

t
F
t

0
Eo(u(y)) dy

Apply Proposition 2.1 to both sides to obtain

n F
A

|AQou|2 mu0 (du)=L
2 F

A

Eo(u) mu0 (du)

The extension to any invariant measure now follows from (2.5). A similar
procedure on (3.4) yields (3.7). L

Corollary 3.2. If o > ō, then for any invariant probability measure m,

0 [ Oeo(u)P [
1
o2

OEo(u)P
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Proposition 3.3. Suppose that o [ o
¯

. Then for any invariant prob-
ability measure m

L2OEo(u)P=−nO|APou|2P (3.8)

and

L2Oeo(u)P=−nO||Pou||2P (3.9)

Proof. Similar to that of Proposition 3.1. L

Note that (3.8) and (3.9) imply that any invariant measure depends
on n.

Corollary 3.4. If o [ o
¯

, and o > o0, then

o2Oeo(u)P [ OEo(u)P [ 0 (3.10)

Proof. Note that

−o2L2Oeo(u)P=no2O||Pou||2P \ nO|APou|2P=−L2OEo(u)P L

Thus while Corollary 3.2 shows that for large o, the energy flux OeoP is
negligible versus the enstrophy flux, Corollary 3.4 shows that for small o it
is the other way around.

Proposition 3.5. For o1 [ o2 such that (Po2 −Po1 ) f=0

nO|A(Po2 −Po1 ) u|
2P=L2OEo1 (u)P−L

2OEo2 (u)P (3.11)

Proof. Subtract (3.1) for o=o1 from the same relation for o=o2
and use

||po2 ||
2=||po1 ||

2+||(Po2 −Po1 ) u||
2, |Apo2 |

2=|Apo1 |
2+|A(Po2 −Po1 ) u|

2

we find that

1
2
d
dt
||(Po2 −Po1 ) u||

2+n |A(Po2 −Po1 ) u|
2=−L2[Eo2 −Eo1]

Applying Proposition 2.1 and Lemma 2.2 as before completes the
proof. L
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Remark 3.6. Observe that if

nO|A(Po2 −Po1 ) u|
2P° L2OEo1 (u)P

then (3.11) yields

OEo2 (u)P % OEo1 (u)P (3.12)

(See Section 4 for the physical interpretation of this result, and the
appendix for the mathematical definitions of ° and % .)

In the scientific literature, the quantity OEo(u)P is referred to as the
enstrophy (per mass) flux at wavenumber o according to the statistics given
by the measure m.

Proposition 3.7. For all o \ o0

O|EP

o (u)|P [ c5G
no0

L2o
O|AQou|2P =

if o > ō c5G
o0

o
OEo(u)P with c5=c

2
3

(3.13)

Proof. From (1.11) it follows

L2 |EP

o | [ c
2
3 |qo |

1/2 ||qo ||3/2 |Apo |1/2 ||Apo ||1/2

[ c5 ||qo ||2 |Apo | [
c5
o
|Aqo |2 ||po ||

Using Lemma 1.2, we find that

L2 |EP

o | [ c5nG
o0

o
|Aqo |2

Taking the time average yields the first relation in (3.13) while the second
one follows from (3.6). L

Proposition 3.8. If Pof=f, then

OEQ

o (u)P [ 11+c5G
o0

o
2 OEo(u)P (3.14)

and

OEP

o (u)P [ nG
o0

o
11+c5G

o0

o
2−1 OEQ

o (u)P (3.15)
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Proof. Clearly, (3.14) follows from (3.13) and the fact that EQ

o (u)=
Eo(u)+EP

o (u). It also follows from this fact and (3.13) that

OEP

o (u)P [ c5G
o0

o
(OEQ

o (u)P−OE
P

o (u)P)

Thus,

11+c5G
o0

o
2 OEP

o (u)P [ c5G
o0

o
OEQ

o (u)P L

Proposition 3.9. If Pof=f and

o > c5o0G (3.16)

then

O|EP

o (u)|P [ c5G
o0

o
11−c5G

o0

o
2−1 OEQ

o (u)P (3.17)

and

OEQ

o (u)P \
n

L2
11−c5G

o0

o
2 O|AQou|2P=11−c5G

o0

o
2 OEo(u)P (3.18)

Proof. By (3.13) it follows that

O|EP

o |P [ c5G
o0

o
OEoP=c5G

o0

o
[OEQ

o P−OE
P

o P] [ c5G
o0

o
[OEQ

o P+O|EP

o |P]

from which (3.17) follows directly. Decompose the left hand side of (3.6) to
obtain

L2[OEQ

o P−OE
P

o P]=nO|AQou|
2P

so that by (3.17) we have

L2OEQ

o P \ nO|AQou|2P−L2O|E
P

o |P

\ nO|AQou|2P−c5G
o0

o
11−c5G

o0

o
2−1 L2OEQ

o P
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and consequently,

51+c5G
o0

o
11−c5G

o0

o
2−16 OEQ

o P \
n

L2
O|AQou|2P

Multiplication by (1−c5G
o0
o ) gives (3.18). L

4. KRAICHNAN THEORY

For obvious reasons, there are severe difficulties in carrying out
experiments on turbulent flows in two dimensions. Consequently there
are few direct empirical observations of such flows. Kraichnan’s theory of
fully developed turbulence in two dimensions (1) is largely dependent upon
extrapolations from what is observed in 3-D, and on some reasonable
physical-phenomenological arguments. Thus it is essential to establish the
extent to which that theory is consistent with the properties of the Navier–
Stokes equations in 2-D.

We note that the theory is based on the following

Empirical Assumptions 4.1

(a) At length scales much smaller than those of the enstrophy feeding
structures, fully developed turbulence always looks the same.

(b) At the upper range (lowest wavenumbers) of the length scales
in (a), the viscous dissipation of enstrophy is negligible and the motion is
dominated by the transfer of enstrophy to smaller scales through a breakup
of the eddies into smaller ones due to inertial effects.

(c) Most of the viscous dissipation of enstrophy takes place at the
length scales in (a) which are much smaller than those in (b).

(d) The range in (c) is dominated by viscous effects.

(e) At the lower range (highest wavenumbers) of the length scales
in (a), no significant relative movements occur.

In fact, a more specific mechanism on how inertial effects act in the
range in (b) has been devised by Kraichnan, (15) namely

(b −) At the scales in (b), eddies break up into eddies of about half
their linear size while traveling a distance comparable to their linear size.
(For a more involved mechanism, reflecting intermittent events, see ref. 16.)

We recall in this section the famous heuristic inferences made from
these assumptions by Kolmogorov, (17) Batchelor, (18) and Kraichnan. (1) We
use this opportunity to give rigorous mathematical definitions based on the
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Navier–Stokes equations for the physical quantities in those heuristic deri-
vations. The heuristic theory may seem to be disconnected from the math-
ematical theory of the Navier–Stokes equations, but it is precisely this
concern that this paper will address to some extent. Our mathematical
setting is not identical to that of the conventional theory of fully developed
turbulence; rather, it is more akin to that of numerical simulations of the
latter. We hope that this section will introduce the heuristic theory of tur-
bulence to a more mathematically oriented audience.

In the first part of this section, we will not make use of the specific
mechanism in (b −); we will simply exploit the universality assumption in (a)
to obtain the Kraichnan spectrum for two-dimensional turbulent flows,
following Kolmogorov (17) and Batchelor. (19) After that derivation we will
obtain the same result without resorting to the universality assumption and
using instead the more precise mechanism in (b −).

The range in (b) is termed the inertial range, and that in (c), the dissi-
pation range. The universality assumption (a) means that at those scales the
statistical properties of the motion are independent of how the enstrophy is
fed into the system. Moreover, it is presumed that the feeding occurs only
at large length scales. According to (b) and (d), one basic physical quantity
is the enstrophy. Since most of the enstrophy fed into the fluid is dissipated
by viscosity within the dissipation range, one must also consider the vis-
cosity and the rate of dissipation of enstrophy as basic physical quantities.
Hence, in a more explicit formulation, the statistical quantities (related
with a turbulent motion) should depend only on the length scale, the vis-
cosity n and the enstrophy dissipation rate

g=def
n

L2
O|Au|2P (4.1)

We now apply the universality assumption to deduce the form of the
average energy in the eddies within a range of length scales. Namely, we consider

eo=2 times the average energy per unit mass of the eddies

of linear size a ¥ 5 1
2o
,
1
o
2 , that is a ’

1
o

(4.2)

In terms of the solution to the Navier–Stokes equations eo, the average of
(two times) the energy/mass over the modes with wavenumbers in (o, 2o],
is defined as

eo=
def 1
L2

O|uo, 2o |2P (4.3)
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Within the range in (a), the quantity eo should vary with o, but enjoy a
universal property in the sense that it depends only on n and g.

If we consider o within the inertial subrange, then according to (b), the
viscosity should play a minor role, so that eo should actually depend only
on g and o, say

eo=g(g, o)

In particular, this relation should be independent of the choice of units for
space and time. Thus, if we pass from x, t to xŒ=tx, tŒ=yt we should still
have

e −oŒ=g(gŒ, oŒ)

From (4.3) we have

e −oŒ=
t2

y2
eo, oŒ=

o

t
, gŒ=

g

y3

that is

t2

y2
g(g, o)=g(g/y3, o/t)

Upon taking t=o and y=g1/3 one obtains, within the inertial range,

eo=
y2

t2
g(1, 1) ’

g2/3

o2
(4.4)

This relation is consistent with the classical estimate of the Kraichnan
spectrum which is discussed in Remark 6.2.

We can also apply the universality assumption to obtain a wavenumber
od naturally associated with the dissipation range. According to the above,
such a wavenumber should depend only on n and g, say

od=h(n, g)

From the universality assumption, we obtain

o −d=h(nŒ, gŒ)
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From (4.1),

o −d=
od

t
, nŒ=

t2n

y
, gŒ=

g

y3

that is

1
t
h(n, g)=h(t2y−1n, y−3g)

With the choices

t2

y
=
1
n
, y3=g

we obtain

od=h(n, g)=th(1, 1) ’ 1
g

n3
21/6=def og (4.5)

where the last equality defines og. We note that at this moment, it is
not clear whether most of the viscous enstrophy dissipation occurs around
od ’ og, or, for instance, beyond them.

We now present another derivation of (4.4) by Kraichnan, which uses
the mechanism described in (b −) instead of the postulate (a). The mecha-
nism in (b −) can be expressed in terms of the following quantities associated
with a length scale a ’ o−1 as in (4.2),

Uo=average velocity of eddies of size a,

to=average time for those eddies to travel the distance a,

Eo=average enstrophy per unit mass of eddies of linear size a

Then,

Uo ’ e
1/2
o , to ’

a

Uo
’
1
oe1/2o

(4.6)

In terms of the solution to the Navier–Stokes equations, average of the
enstrophy/mass, over the modes with wavenumbers in (o, 2o], is defined
by

Eo=
def 1
L2

O|A1/2uo, 2o |2P (4.7)
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It follows immediately from (4.7) that

Eo ’ o2eo (4.8)

The feeding structures in the Navier–Stokes equations are embodied in the
force f, so that the situation in (a) occurs for o± ō. At the length scales in
(b), according to the eddy break up process in (b −), the enstrophy flux per
unit mass per unit time through wavenumber o,

go=
def 1
L2

OEoP (4.9)

accounts for most of the enstrophy dissipation of the eddies with linear size
a ’ o−1 during the characteristic time to and, hence, should satisfy

go ’
Eo
to

’ o3e3/2o

i.e.,

eo ’
g2/3o
o2

(4.10)

(For the consistency of this estimate with Kraichnan’s form of the energy
spectrum, see Remark 6.2.)

The rigorous definitions (4.7) and (4.9) for Eo and go yield

to ’
O|A1/2uo, 2o |2P
L2OEoP

(4.11)

The length scales in (b −) define a wavenumber interval [o
¯
i, ōi], the so-

called inertial range. The cascade of enstrophy mechanism in (b −) means
that

go
¯
i
% go % gōi (4.12)

for all o
¯
i [ o [ ōi.

According to (b) and (c), most of the enstrophy which is fed into
the large wavenumbers is transferred through the inertial range only to be
dissipated by viscosity in the dissipation range. Hence, the transfer of
enstrophy per unit time to higher modes through a wavenumber within the
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inertial range should be the same as the enstrophy dissipation rate by
viscous effects which occurs in the dissipation range. In other words,

go % g (4.13)

By (4.12) it follows that

eo ’
g2/3

o2
, for o

¯
i [ o [ ōi (4.14)

The time that it takes an eddy within the inertial range to break up
into eddies with half their size is called the eddy turnover time. The cascade
mechanism (b −) asserts that this time is of the order of the time that it takes
an eddy to travel a length comparable to its linear size. We can also asso-
ciate with such an eddy a turnaround time, which is the time that it takes an
eddy to rotate once around its axis. It happens that the turnaround time is
also of the same order of the turnover time. Indeed, the turnaround time of
an eddy with linear size a ’ 1/o is approximately 1/E1/2o , which, according
to (4.6) and (4.8), is equal to to. We also note from (4.6) and (4.14) that the
characteristic time to is actually independent of o,

to ’
1
g1/3
, for o

¯
i [ o [ ōi

Concerning (e), it can be described by

eoŒ ° eo, if o [ od ° oŒ (4.15)

Condition (4.15) is the basis for the Landau–Lifschitz description of the
number of degrees of freedom in turbulent flows. It suggests that the eddies
of linear size much smaller than o−1d are of no importance to the flow and
need not be represented in a parameterization of the velocity field. Hence,
we may retain only the eddies which can be resolved in a mesh of linear size
of the order of o−1d . Since there are approximately (od/o0)2 squares with
that linear size, the number of degrees of freedom in a turbulent flow
should be of the order of (od/o0)2.

In the conventional theory of turbulence, the form of the spectrum in
the inertial range—(4.14) in the two-dimensional case—is usually assumed
to hold up to the dissipation wavenumber od. We will follow this conven-
tion here and assume that

eo ’
g2/3

o2
, for o

¯
i [ o M od (4.16)
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We choose od as small as possible to still have

n
1
L2

O|A(Pod −Po¯ i
)|2P ’ g (4.17)

The eddies below o
¯
i were neglected in (4.17) since according to (c) there is

nearly no enstrophy dissipation by viscosity at those scales, i.e.,

n
1
L2

O|Au0, o
¯ i
|2P° g (4.18)

From (4.17),

g ’ n C
−

24no4de2nod , where C
−

denotes the summation over all integers n such that o
¯
i [ 2nod [ od. Using

(4.16), we obtain

g ’ no4d C
−

24n
g2/3

(2nod)2

’ ng2/3o2d C
−

22n

=ng2/3o2d
1
3
14−1 o¯ i

od
222

and hence

od ’ og (4.19)

We recall that in ref. 10 it was rigorously proved that

1
c6
G1/6 [

og

o0
[ G1/3 (4.20)

where the latter inequality also follows directly from (2.28) and the defini-
tions of g, og. It is easy to check that one can take c6=(4c3)1/6. The
scenario in (a) requires that

og ± ō (4.21)

618 Foias et al.



Since ō/o0 is fixed, we have by (4.20) that a sufficient condition for (4.21)
is

G1/6± c6 (4.22)

If, on the other hand, (4.21) does hold, then dividing the end terms in
(4.20) by G1/6 gives us the necessary condition for (a)

G1/6± 1/c6 (4.23)

Clearly, for either (4.22) and (4.23) to hold, we must have G large. Hence-
forth we will assume (4.23) holds.

We should emphasize here that, as will be proved in the next two
sections (see Theorems 5.8 and 6.5 and Remark 6.7), ōi differs from og
by the factor [ln(og/o

¯
i)]−1/2, and that the enstrophy cascade begins at ō,

hence o
¯
i \ ō.

5. RIGOROUS RESULTS ON THE ENSTROPHY AND

ENERGY CASCADE

Recall that we have proved that the mean enstrophy and energy fluxes
are positive for o > ō, and negative for o [ o

¯
(see Corollaries 3.2 and 3.4).

In this section we measure the extent to which the cascades hold, and prove
rigorously that the enstrophy cascade is more pronounced than the energy
cascade in the small length scales, while the converse holds in the large
length scales. By (4.9), we may express the enstrophy cascade (4.12) as

OEoP % OEoŒP in the enstrophy cascade range

The energy cascade is then

OeoP % OeoŒP in the energy cascade range

The accuracy of the cascade relations in (4.12) can be measured by

1−
OEoP

OEoŒP
and 1−

OeoP

OeoŒP
(5.1)

The smaller the quantities in (5.1) are, the more accurate the corresponding
cascade relations are. To compare their magnitudes we use the adimensio-
nal quotient

o2OeoP

OEoP
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Lemma 5.1. The following are equivalent

(i) OEōP=0

(ii) OeōP=0

(iii) Qōu=0, m-a.e.

(iv) support of m … PōH.

Proof. The first two relations are equivalent to the third by Proposi-
tion 3.1. Finally (iii) and (iv) are equivalent because of the continuity of the
function Qou. L

Lemma 5.2. The following are equivalent:

(i) OEo
¯
P=0

(ii) Oeo
¯
P=0

(iii) Pou=0, m-a.e. for all o [ o
¯

(iv) support of m … QoH for all o [ o
¯

.

Proof. Apply Proposition 3.3. L

Thus, provided the support of m ¼ PōH (resp. supp m ¼ QoH for all
o [ o
¯

), we may define

ōs=5
O|AQōu|2P
O||Qōu||2P
61/2, o

¯
s=5

O|APo
¯
u|2P

O||Po
¯
u||2P
61/2

Corollary 5.3. If ōs is defined, then ōs > ō; if o
¯
s is defined, then

o
¯
s [ o
¯

.

Proof. If O||Qō ||2P > 0, then since

|AQō |2 \ ln+1 ||Qōu||2

where ln+1 > ln=ō2. The second assertion is obvious. L

Proposition 5.4. We have

0 [ 1−
OEoP

OEōP
[ 1 o
ōs
22 51−OeoP

OeōP
6 , for ō [ o [ ōs (5.2)

1−
OEoP

OEo
¯
P
\ 1 o
o
¯
s

22 51−OeoP
Oeo
¯
P
6 , for o

¯
s [ o [ o

¯
(5.3)
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Proof. Applying Proposition 3.1, noting that

|AQōu|2=|A(Qō−Qo) u|2+|AQou|2

(and similarly for ||Qōu||2), we have

1−
OEoP

OEōP
=1−

O|AQou|2P
O|AQōu|2P

=
O|A(Qō−Qo) u|2P

O|AQōu|2P

[
o2O||(Qō−Qo) u||2P

O|AQōu|2P

=
o2

ō2s

O||(Qō−Qo) u||2P
O||Qōu||2P

[ 1 o
ōs
22 51−OeoP

Oeo
¯
P
6

Relation (5.3) is proved in an analogous way using Proposition 3.3. L

Proposition 5.5. We have

OEoP \ o2OeoP51
ōs

o
22−16 , for ō [ o [ ōs (5.4)

o2OeoP [ OEoP51−1
o
¯
s

o
226 , for o

¯
s [ o [ o

¯
(5.5)

Proof. By Proposition 3.1, we have

o2OeoP

OEoP
=
o2O||Qou||2P
O|AQou|2

[
o2O||Qōu||2P

O|AQōu|2P
O|AQou|2P
O|AQōu|2P

=1 o
ōs
22 OEōP

OEoP
(5.6)

Since OeoP/OeōP > 0, we have by (5.2)

1−
OEoP

OEōP
[ 1 o
ōs
22
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which is equivalent to

OEōP

OEoP
[

1
1−(o/ōs)2

(5.7)

Using (5.7) in (5.6) gives us (5.4). The proof of (5.5) is similar. L

Remark 5.6

(i) Proposition 5.4 shows that for ō [ o [ ōs, the enstrophy cascade
is more expressed than the energy cascade, while for o

¯
s [ o [ ō, the oppo-

site is true. These features are amplified if ōs ± ō, o
¯
s ° o
¯

, and o is not too
near ōs, respectively o

¯
s.

(ii) Proposition 5.5 shows that if ōs ± o \ ō, then the mean enstrophy
flux dominates the dimensionally adjusted mean energy flux, o2OeoP. We
consider these facts as a rigorous confirmation of Kraichnan’s view that in
2-D turbulence the enstrophy cascade exists, and is more pronounced and
more relevant than the energy cascade.

At this point we do not have a rigorous estimate for go=OEoP in the
cascade range ō [ o° ōs. Our next aim is to rigorously establish (4.13) on
a certain interval contained in [ō, ōs). For this let us recall that in turbu-
lence theory the quantities g (see (4.1)) and

E=
n

L2
O|A1/2u|2P (5.8)

represent the averaged dissipation of enstrophy (resp. 2 times that of
energy) per mass and per unit of time. Define the wavenumber

os=1
g

E
21/2=1O|Au|

2P

O||u||2P
21/2 (5.9)

It is easy to prove that os [ ōs (provided the latter is defined) and that

nO|Au0, oi |
2P

L2g
[ 1 oi
os
22

and hence that the condition (4.18) is fulfilled if o
¯
i ° os. Note also that

nO|APou|2P [ no2O|A1/2Pou|2P [ no2O|A1/2u|2P [ n 1 o
os
22 O|Au|2P
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and consequently, for o > ō, we have by Proposition 3.1 that

L2OEoP=nO|AQou|2P=nO|Au|2P− nO|APou|2P \ nO|Au|2P11−1 o
os
222

(5.10)

Thus we have proved the following.

Lemma 5.7. For ō < o we have

1−1 o
os
22 [ OEoP

g
[ 1 (5.11)

Hence, given d ¥ (0, 1], and o ¥ (ō, d1/2os] (which is possible only if
os/ō \ d−1/2), then due to (5.11)

:1−OEoP
gL2
: [ d

Clearly this means that if os ± ō and

ō < o° os (5.12)

then

OEoP % g (5.13)

The preceding can be summed up in the following.

Theorem 5.8. The interval in wavenumbers over which the enstrophy
cascade conditions (4.12) and (4.13) holds contains (ō, Cos), with C a small
enough absolute constant, provided os ± ō.

Remark 5.9. If we introduce the wavenumber

oy=
O||u||2P
O|u|2P

(for conescenti we notice that 1/oy ’ Taylor length) then the analog of
Lemma 5.7 is that

1−1 o
oy
22 [ OeoP

E
[ 1, for o > ō
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while the analog of Theorem 5.8 is that if oy ± ō, then the energy cascade
holds for o satisfying ō < o° oy. The proofs are similar to those for
Lemma 5.7 and Theorem 5.8.

Two significant relations between oy and os are

oy [ os and os [ ōs 11−
ō2

o2y
21/2 (5.14)

The first relation in (5.14) follows easily from

O||u||2P [ O|Au| |u|P [ O|Au|2P1/2 O|u|2P1/2

while the second follows from

o2s=
O|APōu|2P+ō

2
sO||Qōu||

2P

O||u||2P
=

O|APōu|2P− ō
2
sO||Pōu||

2P

O||u||2P
+o2s \ ō

2
s
11− ō

2

o2y
2

The relations in (5.14) provide additional support to Remark 5.6(ii).

Remark 5.10. We now have established the possibility of an inter-
val range beyond ō in which (4.13) is valid. This provides a partial but
rigorous confirmation of the basic assumption (b) in 4.1. However, in our
approach the mathematical formulation of the eddy breakup mechanism in
(b −) seems to be

OEoP %
1
L2

O−(B(uo/2, o, uo/2, o), Auo, 2o)P (5.15)

Our progress toward rigorously establishing (5.15) is noted in the
following would-be derivation

OEoP % OEQ

o P

=
1
L2

O−(B(u0, o, u0, o), Auo, 2o)P

%
? 1
L2

O−(B(uo/2, o, uo/2, o), Auo, 2o)P (5.16)

The first relation in (5.16) follows directly from Proposition 3.9 under the
condition

o \ c5o0G
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which by (4.20) forces

o \ og 1
og

o0
22

which in turn holds only deep in the dissipative range (see (4.19)). Thus two
tasks remain for future research: extending Proposition 3.9 into the inertial
range, and establishing the final % relation in (5.16).

Remark 5.11. Assuming (5.16) holds, then one can rigorously prove
that

eo/2+eo \ (12c1c
1/2
o )

−2/3 g
2/3

o2
1

(oL)2/3
(5.17)

where

co=
O|uo/2, o |4P
O|uo/2, o |2P2

We omit the proof of (5.17) since the factor (oL)−2/3 makes the relation
(5.17) much weaker than the relation (4.4) (see also (4.14)), which gives

eo/2+eo ’
g2/3

(o/2)2
+
g2/3

o2
’
g2/3

o2

Remark 5.12. Although the Navier–Stokes equations have smooth-
ing properties, and the Euler equations do not, for small viscosity, or
equivalently, for large generalized Grashof numbers, the long time behav-
ior of solutions to these equations bear similarities. Moreover, while the
2-D periodic Euler equations, forced at low wave numbers, do not develop
arbitrarily small scales in finite time, they do display features in which the
gradients of the vorticity are very large compared to the vorticity itself (see,
for example, ref. 20). Good statistical estimates of these gradients and the
vorticity itself are respectively g and E. Therefore it is justified to consider
the case where the ratio g/E is large. One of the main rigorous results of
this paper is that this condition is equivalent to the existence of the
enstrophy cascade.

6. SUPPLEMENTAL RIGOROUS SUPPORT FOR THE KRAICHNAN

THEORY

In Section 4 we heuristically inferred that an enstrophy cascade should
hold for o from some o

¯
i up to some ōi. In Section 5 we established that
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this is true at least up to a wavenumber comparable to os (albeit, much
smaller). On the other hand, in Section 4, we also gave a heuristic argument
that the dissipative range should start at a wavenumber comparable to og.
Hence from the heuristic point of view, os M og. We start this section with a
rigorous proof of this fact.

Theorem 6.1. If G1/6± c6, we have os [ C1og where og is defined
in (4.5), and

C1=C1 1
ō

o0
2=5 ō

o0
11+c −4 1 ln

ō

o0
+12

1/2261/3 (6.1)

where c −4=2pc4.

Proof. The relations (2.19) and (2.25) give

ng+
1
L2
(OB(u, u)P, f)=

1
L2
|f|2 (6.2)

so by (1.13)

1
L2
|f|2 [ ng+c4 1 ln

ō

o0
+12

1/2 1
L2

O||u||2P |f| (6.3)

Using (2.19) once again, along with definition (5.8), we have

g=
1
L2

On |Au|2P=
1
L2
(f, AOuP)

[
1
L2
||f|| O||u||2P1/2

[
ō

Ln1/2
|f| 7n 1

L2
||u||28

1/2

=
ō

Ln1/2
|f| E1/2 (6.4)

Apply (6.4) to (6.3) and use again (5.8) to obtain

1
L2
|f| [ n1/2ō

1
L
E1/2+

c4
n
1 ln ō
o0
+12

1/2

E (6.5)

Introducing (6.5) in (6.4) gives

g [ ō2E+c −4
ō

o0
1 ln ō
o0
+12

1/2 1E
n
23/2 (6.6)
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If

E

n3
[ ō2o20 (6.7)

then

g

n3
[ ō2

E

n3
+c −4

ō

o0
1 ln ō
o0
+12

1/2 1 E
n3
23/2 [ ō4o20 51+c −4 1 ln

ō

o0
+12

1/26

and hence (see (4.20))

G1/6 M
og

o0
[ 1 ō
o0
22/3 51+c 1 ln ō

o0
+12

1/261/6

which is inconsistent with (4.23). Hence we have the opposite of (6.7) which
is equivalent to

ō <
1
o0
1 E
n3
21/2 (6.8)

Applying (6.8) to the first term on the right hand side of (6.6) yields

g2/3 [ C21
E

n
(6.9)

where C1 is as in (6.1). Clearly (6.9) coincides with os [ C1og. L

Remark 6.2. In the physics and engineering literature dealing with
turbulent flows it is commonly assumed that there exist time averages of
the physically meaningful entities associated with the solution of the
Navier–Stokes equations, and that these averages are independent of the
initial data u0 ¥A. In particular, it is taken for granted that the time
average

lim
tQ.

1
t
F
t

0

1
L2
|Aa(PoŒ−Po) S(y) u0 |

2 dy (6.10)

exists and can be viewed, for o0 Q 0 as a Riemann sum for the integral in
the wavenumbers

F
oŒ

o

q4aS(q) dq (6.11)
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of some function S, called the energy spectrum of the turbulent flow
produced by f. The approximation of the integral (6.11) by the ‘‘Riemann
sum’’ (6.10) should improve as o0 Q 0, or equivalently, as LQ.. In par-
ticular, eo is, for L large enough, a Riemann sum for

F
2o

o

S(q) dq

Accepting the existence of the limit in (6.10) and its replacement by
(6.11), Kraichnan’s argument as presented in Section 4 (see (4.10)) shows
that within the inertial range

F
2o

o

S(q) dq ’ eo ’
(4.10)
g2/3o−2 (6.12)

whence (assuming that (6.12) holds for o
¯
i [ o M od)

F
.

o

S(q) dq ’ F
od

o

g2/3q−3 dq (6.13)

Note that

S(o) ’ g2/3o−3 (6.14)

is consistent with (6.12) and (6.13). The relation (6.14) is the celebrated
Kraichnan energy spectrum for 2-D turbulence. We consider a somewhat
more explicit form of (6.14), and provide a rigorous basis for (6.13) in the
following.

Proposition 6.3. Suppose that

o
¯
i ° og (6.15)

and that

S(o) % cKrg2/3o−3 for o
¯
i [ o [ ōd (6.16)

with

ōd=
def 1 2

cKr
21/2 og (6.17)
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and

cKr ’ 1 (6.18)

Then

n
1
L2

O|Auo,. |2P° g for o \ ōd (6.19)

Proof. It suffices to show that

n
1
L2

O|Auo
¯ i
, ōd
|2P % g (6.20)

In turn, since

n
1
L2

O|Auo
¯ i
, ōd
|2P % n F

ōd

o
¯ i

q4S(q) dq

it suffices to show that

n F
ōd

o
¯ i

q4S(q) dq % ncKrg2/3 F
ōd

o
¯ i

q dq %
1
2
ncKrg2/3ō

2
d=g (6.21)

The last relation in (6.21) follows immediately from the definition in (6.17).
To prove the second relation in (6.21), we write

b=def ncKrg2/3 F
ōd

o
¯ i

q dq=
ncKr
2
g2/3[ō2d−o

¯
2
i ]

=
ncKr
2
g2/3 52o

2
g

cKr
−o
¯
2
i
6

=g 1 n
g1/3
25o2g−

cKr
2
o
¯
2
i
6

=g 51−cKr
2
1 o¯ i
og
226
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and observe that by (6.18) and (6.15)

:1−b
g
:=cKr
2
1 o¯ i
og
22° 1

To prove the first relation in (6.21) we write

a=def n F
ōd

o
¯ i

q4S(q) dq=n F
ōd

o
¯ i

q4 1 S(q)
cKrg2/3q−3
2 cKrg2/3q−3 dq

=b+n F
ōd

o
¯ i

cKrg2/3q 1
S(q)
cKrg2/3q−3

−12 dq

Applying (6.16) yields

:1− a
b
: [ sup

o
¯ i

[ o [ ōd

:1− S(q)
cKrg2/3q−3
:° 1 L

Corollary 6.4. Under the assumptions of Proposition 6.3 we have
that

n

L2
O|Auo, ōd |

2P % g for all o° ōd

Proof. Observe that

n

L2
O|Auo, ōd |

2P % n F
ōd

o

q4S(q) dq

% ncKrg2/3 F
ōd

o

q dq

=
ncKr
2
g2/3[ō2d−o

2]=g 51−1 o
ōd
226 L

Theorem 6.5. Under the assumptions of Proposition 6.3 we have
that

g % n F
ōd

o
¯ i

o4
g2/3

o3
do %

n

2
g2/3ō2d (6.22)

og ’ ōd (6.23)

o2g ’ o
2
s ln
og

o
¯
i

(6.24)
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and

ō [ o
¯
i ° os [ og (6.25)

Proof. The first relation in (6.22) follows from (6.20), the second
follows from (6.15), and (6.23) follows immediately from the definition of
og in (4.5). By (6.19) we have

n

L2
O||Qou||2P°

g

o2
[
g

ō2d
%
n

2
g2/3 for o \ ōd

We write

n

L2
O||u||2P=

n

L2
O||Pōdu||

2P+
n

L2
O||Qōdu||

2P

and note that by (4.18) and (6.23)

n

L2
O||Pōdu||

2P ’ n F
ōd

o
¯ i

g2/3

q
dq

=ng2/3 ln
ōd

o
¯
i
’ ng2/3 ln

og

o
¯
i

whence

E=
n

L2
O||u||2P ’ ng2/3 ln

og

o
¯
i

(6.26)

Multiplying (6.26) by g1/3(nE)−1 we have

o2g=
g1/3

n
’
g

E
ln
og

o
¯
i
=o2s ln

og

o
¯
i

(6.27)

The second relation in (6.25) follows from (6.15). L

Remark. If the Kraichnan theory holds for the invariant measure m,
it is necessary that os/ō± 1.

As an aside, note that the role of the constant C1 in (6.9) is played by
(ln(og/o

¯
i))−1 in (6.27), making the latter the stronger relation as og increases.
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This should be complemented with the following.

Remark 6.6.

n
1
L2

O|A(Pog −Pos ) u|
2P=n F

og

os

o4
g2/3

o3
do

=
n

2
g2/3(o2g−o

2
s)

’
n

2
g2/3
g1/3

n
11− 1

ln ogo
¯ i

2

=
1
2
g 11− 1

ln ogo
¯ i

2

so

n
1
L2

O|A(Pog −Pos ) u|
2P ’ g

In other words, strictly speaking, if (6.14) holds up to og, then the interval
[os, og] is beyond the enstrophy cascade range.

Remark 6.7. For the two-dimensional case we consider in this
paper, the counterpart of the well known Kolmogorov relation

E ’
U3

L

where

U=1O|u|
2P

L2
21/2

is

g ’
U3

L3
(6.28)

The inequality

E [ C
U3

L
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was rigorously established first for the case of channel flow in refs. 21
and 22 (see also ref. 23 for the periodic case).

Theorem 6.8. We have

g [ C2
U3

L3
(6.29)

where

C2=(2pC0)4 (1+c1) (6.30)

Proof. From (6.2) and (1.9) we have

1
L2
|f|2 [ ng+c1

1
L2

O|u|2 |A1/2f|1/2 |A3/2f|1/2P

[ ng+c1
1
L2

O|u|2P ō2 |f|=ng+c1U2ō2 |f| (6.31)

From (2.19) we have that

g=
1
L2

On |Au|2P=
1
L2
(f, AOuP) [

1
L2
|OuP| |Af| [

U
L
ō2 |f| (6.32)

Using this in (6.31) gives

1
L2
|f| [ nUō2

1
L
+c1U2ō2 (6.33)

If nL \ U, then

1
L2
|f| [ n2ō2

1
L2
(1+c1)

whence

G [ (1+c1)1
ō

o0
22
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which does not allow (4.23) to hold. Consequently we can assume that
n

L < U, hence

1
L
|f| [ (1+c1) U2ō2L (6.34)

Introducing this in (6.32) we obtain

g [ (1+c1) U3ō4L=(1+c1)(ōL)4 1
U
L
23

which clearly implies (6.29) and (6.30). L

Remark 6.9. If the Kraichnan theory holds, then using (4.16) we
have

U2=O|u|2P
1
L2

\ C
o
¯ i

[ 2nog [ og

e2nog

’ C
o
¯ i

[ 2nog [ og

g2/3

(2nog)2
=g2/3

4
3
1 1
o
¯
2
i

−
1
4o2g
2

so that

U2 N g2/3
1
o
¯
2
i

(6.35)

However, notice also that the rigorous estimate (6.29) can be written as

g2/3 M U2o20 ’ U
2ō2

so that the following is a rigorous estimate

U2 N
g2/3

ō2
\
g2/3

o
¯
2
i

(6.36)

Comparing (6.35) with (6.36), we see that the latter is a rigorous, albeit
severely limited, confirmation of the Kraichnan energy spectrum. Indeed
we have the following relation

U2 ’ F
od

o
¯ i

S(q) dq ’ F
od

o
¯ i

g2/3

q3
dq=

g2/3

2
1 1
o
¯
2
i

−
1
o2d
2 ’ g

2/3

o
¯
2
i
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Remark 6.10. For the benefit of the reader we note that although
we do not consider the log correction to the Kraichnan spectrum (see
refs. 24 and 25) this will not change the conclusion of our estimates,
because the rigorous estimates we obtain are compatible with the log
corrected estimates. Our rigorous results are not sharp enough to detect the
presence of the log correction.

7. NECESSARY CONDITIONS FOR THE VALIDITY OF THE

KRAICHNAN THEORY

This section isolates a set of assumptions, both purely mathematical,
and heuristic, under which the results above connect to the Kraichnan
theory of fully developed two-dimensional turbulence. Let m be an
invariant probability measure on A that shall remain fixed throughout this
section.

To be more precise, we will say that the Kraichnan theory of turbulence
holds, if

[K1] nL−2O|Auo,. |2P° g for o± og,
[K2] The cascade condition (4.12) holds for o

¯
i [ o [ ōi with

o
¯
i ° ōi,

[K3] The relations (6.15), (6.16) hold with ōd and cKr as in (6.17)
and (6.18) respectively.

Proposition 7.1

(i) [K3] implies [K1] and [K2] (with ōi ’ ōd),
(ii) [K3] implies

ō° os (7.1)

(iii) (7.1) implies [K2] and (6.15)

Proof. To prove (i), note that [K1] is immediate and use Corollary 5.8
and the analog of (5.10) to establish [K2]. By (1.27) we have that (6.15) is
equivalent to ō° og. From (6.27) we have

og

ō
’
os

ō
1 ln og
ō
21/2

Set

a=
og

ō
and b=

os

ō
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There exists constants c9, c10 such that

c9a(ln a)−1/2 < b < c10a(ln a)−1/2

from which it is clear that a± 1 if and only if b± 1. That (7.1) implies
[K2] follows from 5.8; that it implies (6.15) follows from 6.1. L

Remark 7.2. Note that os ± ō implies the existence of an inertial
range, whereas the Kraichnan theory implies os ± ō.

We now derive explicit conditions on both the force f and the
invariant measure m that are equivalent to (7.1). First, we need to define
some quantities which were used to prove in ref. 26, that for the Kraichnan
theory to hold, the force f must have at least two modes with distinct
wavenumbers.

To start, for any v in L2 let vo denote the L2 projection of v onto the
eigenspace of A associated with o. In particular then, we have

f= C
o
¯
[ o [ ō

fo and OuP= C
o0 [ o

OuPo

and (Af)o=o2fo, (AOuP)o=o2OuPo. It follows from (2.19) that

On |Au|2P=(f, AOuP)=C o2(fo, OuPo)

=C o2(fo, OuPo)+−C o2(fo, OuPo)− (7.2)

and similarly

nO||u||2P=(f, OuP)=C (fo, OuPo)

=C (fo, OuPo)+−C (fo, OuPo)− (7.3)

where for a real number a

a+=max{a, 0} and a−=−min{a, 0}

and the summation in both relations, as well as throughout the remainder
of this section, is taken over o

¯
[ o [ ō. We rewrite (7.3) as

(f, OuP)+r−=r+ (7.4)
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where

r+=C (fo, OuPo)+ and r−=C (fo, OuPo)−

Suppose that (f, OuP)=0, so that by (7.3) we have nO||u||2P=0. It
follows that u=0 a.e.-m, so that taking the average of (1.1), we find that
f=0. But we consider only G > 0. So, in fact r+ \ (f, OuP) > 0, and thus
we may write

On |Au|2P=5; o
2(fo, OuPo)

; (fo, OuPo)
6 C (fo, OuPo)=o2snO||u||2P (7.5)

If r−=0, then

o2s=
; o2(fo, OuPo)
; (fo, OuPo)+

[
; o2(fo, OuPo)+

; (fo, OuPo)+
[ ō2

Thus merely asking that os > ō (let alone that (7.1) hold) implies r− > 0.
Notice that if f=fo, for some o, then either r+=0 or r−=0. We observe
the following, which was proved earlier in ref. 26.

Proposition 7.3. For the flow to be turbulent (as defined by [K1]–
[K3]), the force f must involve at least two modes with distinct wave-
numbers.

We now note that the averages o± > 0 defined by

; o2(fo, OuPo) ±

r±
=o2± (7.6)

satisfy

o
¯
2 [ o2± [ ō2 (7.7)

With this preliminary we can prove the following.

Proposition 7.4. Suppose os > ō. Then

0 <
r−
r+
< 1 (7.8)
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and

o2s=o
2
−+o−(o++o−)

o+/o− −1
1−r−/r+

(7.9)

Proof. We know from the previous discussion that r+, r− > 0, and in
particular, that o+ and o− are well-defined. We rewrite (7.4) as

nO||u||2P+r−=r+ (7.10)

Since f ] 0, we see from (2.15) that O||u||2P > 0. Thus 0 < r− < r+, which
proves (7.8).

Using (7.6) and the definition of os, we rewrite (7.2) as

o2snO||u||
2P+o2−r−=o

2
+r+ (7.11)

Subtracting o2s times (7.10) from (7.11), we have

o2s(r+−r−)+o
2
−r−=o

2
+r+ (7.12)

Solving for o2s and rearranging, we find

o2s=
o2+r+−o

2
−r−

r+−r−

=o2−+
(o2+−o

2
−) r+

r+−r−

=o2−+(o++o−)
o+−o−
1−r−/r+

from which (7.13) follows readily. L

Theorem 7.5. Suppose os > ō. Then (7.1) is equivalent to

o+/o− −1± 1−r−/r+ > 0 and r+, r− > 0 (7.13)

Proof. Using (7.7) in (7.13) we find

o
¯
2+2o
¯
2 o+/o− −1
1−r−/r+

[ o2s [ ō
2+2ō2

o+/o− −1
1−r−/r+

638 Foias et al.



This gives

1o¯
ō
22 51+2 o+/o− −1

1−r−/r+
6 [ 1os

ō
22 [ 1+2 o+/o− −1

1−r−/r+

which provides the desired equivalence. L

Remark 7.6. If f involves exactly two wavenumbers olo and ohi,
then, regardless of the invariant measure used, the following conditions are
by Theorem 7.5 necessary for (7.1) to hold

ohi=o+, olo=o− (7.14)

and

−r−=(folo , OuPolo ) < 0 < (fohi , OuPohi )=r+ (7.15)

If, however, (7.14) and (7.15) hold, then by Theorem 7.5

ohi/olo−1± 1−r−/r+ > 0 (7.16)

is equivalent to (7.1). This is the main result in ref. 26.
Notice that (7.16) as well as (7.13) together with (7.7) imply that

1−r−/r+ % 0.

Theorem 7.7. We have

1og
o0
22 [ 1 1

2p
22/3 51os

ō
22−16

−1/3

G2/3 (7.17)

Moreover, if the Kraichnan theory ([K1]–[K3]) holds, then

1og
o0
22 5ln og

o
¯
i

6−1/7 M 1 ō
o0
22/7 G4/7 (7.18)

Proof. From (5.9) we have for ō [ o < os

O|AQou|2P−o
2
sO||Qou||

2P=o2sO||Pou||
2P−O|APou|2P

\ 51os
o
22−16O|APou|2P
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In particular, for o=ō, we find that

O|APōu|2P [ 51os
ō
22−16

−1

O|AQōu|2P (7.19)

Using (2.19), the Cauchy–Schwarz inequality (twice), Fubini’s theorem,
and (7.19), we have

nO|Au|2P=(f, AOuP)=(f, OAPōuP) [ |f| |OAPōuP| [ |f| O|APōu|2P1/2

[ |f| 51os
ō
22−16

−1/2

O|Au|2P1/2

and consequently

n2O|Au|2P [ |f|2 51os
ō
22−16

−1

(7.20)

Equivalent to (7.20) we have

g

n3
=
nL−2O|Au|2P

n3
[
|f|2

n4o40
o40/L

2 51os
ō
22−16

−1

so that by definitions (4.1), (4.5), (1.23)

1og
o0
26 [ G2 1

o20L
2
51os
ō
22−16

−1

The estimate in (7.17) now follows from the definition of o0 in (1.3).
If the Kraichnan Theory holds, then from (6.27),

os ’ og(ln og/o
¯
i)−1/2

which when substituted into (7.17) leads after simple algebraic manipula-
tions to (7.18). L

The ratio (og/o0)2 is the Landau–Lifschitz asymptotic degrees of
freedom. (23)

Remark 7.8. It is shown in ref. 27 that the fractal dimension of the
attractor satisfies

dimF(A) [ c7 1
og

o0
22 5ln 1og

o0
2+16

1/3

’ c8G2/3(ln G+1)1/3
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(For a simpler proof see ref. 28.) The estimate in (7.18) then offers an
improvement in the upper bound on the dimension of the attractor, in the
case of fully developed turbulence. Liu gave an example in ref. 29 where

dimF(A) \ cG2/3

for f taken to be some special eigenvector of A. This is reconciled with
(7.18) by noting that, according to 7.3, Liu’s flow could not display the
universal features of fully developed turbulence as discussed in this paper.

APPENDIX A

Remark A.1. Consider a fluid in three dimensions. Let r(x, t)
denote the density. Given N \ 0 and a continuous function k on Rn, where
n=3(1+#) and # is the cardinality of {a: |a|=a1+a2+a3 [N, aj ¥
Z+2 {0}} we denote and define

kpm=quantity of k per (unit of ) mass

=def lim
lQ.

F
[−l, l]3

k 1x, 1 “
|a|

“xa11 “x
a2
2 “x

a3
3

u(x)2
|a| [N

2 r(x, t) d3x

F
[−l, l]3

r(x, t) d3x

provided that the integral makes sense and the limit exists. For an incom-
pressible fluid r is constant, so that

kpm=lim
lQ.

1
(2l)3

F
[−l, l]3

k d3x

For a two-dimensional flow

u=u(x1, x2)=(u1, u2, 0)

If, moreover, k is also independent of x3, then

kpm=lim
lQ.

1
(2l)2

F
[−l, l]2

k d2x

Choose n such that

nL [ l [ (n+1) L (A.1)
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andM such that |k| [M. If k and u are periodic of period L in x, we have

F
[−l, l]2

k d2x=F
[−l, l]20[−nL, nL]2

k d2x+(2n)2 F
(0, L)2

k d2x

and

: F
[−l, l]20[−nL, nL]2

k d2x : [ 4(2n+1) ML2

It follows that

: 1
(2l)2
5F
[−l, l]20[−nL, nL]2

k d2x+(2n)2 F
(0, L)2

k d2x6− 1
L2

F
[0, L]2

k d2x :

[
4(2n+1) ML2

(2l)2
+
|(2n)2 L2−(2l)2|

(2l)2
: 1
L2

F
[0, L]2

k d2x :

[
3(nL) ML
l2

+
|(nL−l)(nL+l)|

l2
: 1
L2

F
[0, L]2

k d2x :

[
3ML
l
+
L(nL+l)
l2
: 1
L2

F
[0, L]2

k d2x :

[
3ML
l
+
2L
l
: 1
L2

F
[0, L]2

k d2x :

Taking the limit as lQ., we have

kpm=
1
L2

F
[0, L]2

k d2x

Notation

L length of square spatial domain W
A −D, with periodic boundary conditions on W
lj, j=0, 1, 2,... eigenvalues of A in increasing order, counted with

multiplicity
wj, j=0, 1, 2,... eigenfunctions of A corresponding to lj
H {u ¥ L2(W) : u=R2-valued trigonometric polynomial,

N · u=0, and >W u(x) dx=0}
V DA1/2
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Po orthogonal projector:HQ span{wj | lj [ o2}
Qo I−Po
uo, oŒ (PoŒ−Po) u, for u ¥H
o0 l1/20 =2p/L
po uo0, o
qo uo,.
A the global attractor for the Navier–Stokes

equations (NSE)
f body force in abstract form of NSE (1.1)
n kinematic viscosity
| · | norm in L2(W)
||u|| |A1/2u|

G generalized Grashof number, |f|
n2o
2
0

Gg associated Grashof number, |A
−1/2f|

n2o0

EQ

o (u)
−1
L2
(B(po, po), Aqo), rate of enstrophy transfer from low
to high wavenumbers at o

EP

o (u)
−1
L2
(B(qo, qo), Apo), rate of enstrophy transfer from high
to low wavenumbers at o

Eo EQ

o −E
P

o , net rate of enstrophy transfer at wavenumber o
eQ

o (u) −(B(po, po), qo), rate of energy transfer from low
to high wavenumbers at o

eP

o (u) −(B(qo, qo), po), rate of energy transfer from high
to low wavenumbers at o

eo eQ

o − e
P

o , net rate of energy transfer at wavenumber o
inertial range [o

¯
i, ōi]

dissipation range [od,.)

os (O|Au|
2P

O||u||2P)
1/2

oy (O||u||
2P

O|u|2P)
1/2

g n

L2
O|Au|2P= 1

L2
O(f, Au)P= 1

L2
(f, AOuP)

og ( g
n3
)1/6

E n

L2
O||u||2P= 1

L2
(f, OuP)

ō smallest o such that Pof=f
o
¯

largest o such that Qof=f
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ōd
og

p(2cKr)1/2

o
¯
s (O|APo¯ u|

2P

O||Po
¯
u||2P)

1/2

ōs (O|AQōu|
2P

O||Qōu||2P
)1/2

cKr Kraichnan constant; it is assumed that cKr ’ 1
a° b a

b < d for some small d ¥ (0, 1), a/b should be nondimen-
sional. The value of d shall remain unspecified, and may
vary from one statement involving ° to the next. In
some instances it may depend on the value of d chosen
earlier, but is always independent of physical parameters
such as n, f and L.

a % b |a/b−1|° 1, a/b should be nondimensional
a M b , a universal constant c so that a/b [ c,

a/b should be nondimensional
a ’ b a M b and b M a
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